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ABSTRACT

The interaction between galactic cosmic rays and the steady solar
wind is studied. In the steady state the cosmic rays form a stationary
cosmic ray gas through which massive magnetic irregularities are carried
by the solar wind. Collisions between the streaming irregularities and
the stationary césmic ray gas transfer energy and momentum to the cosmic
rays. The cosmic ray gas in the solar environment is thereby heated by
friction with the solar wind that flows through it; In the steady state
the average cosmic rays near the earth are more energetic than they were

in interstellar space by a factor that is less than three. b



iINTRODUCT 10N

If we look at local cosmic rays on a scale somewhat larger than the
solaf system we see a star imbedded in the cosmic.ray gas and emitting a
stream of magnetized plasma in all directions. The stellar plasma carries
irregularities whiqh appear as small .kinks or knots in the magnetic field.
There are also inhomogeneities in density and velocity. The magnetic ir-
regularities scatter individual cosmic ray§ with the result that the
stellar plasma tends to pﬁsﬁ the cosmic ray gas away from the star.’' How-
ever the cosmic ray gas diffuses upstream toward the star until a balance
is established in which outward-éonvection is matched by inward diffusion.
A density gradient is thereby set up in which the cosmic ray gas has a
lower density near the star thar in deep intersteliar space. In the
steady state the cosmic ray gds at any point has an isotropic velocity

distribution on the microscopic scale. That is, the bulk velocity of

the cosmic ray gas vanishes, i.e.

W= [fwdey =0
where 'F(’ﬁo is the distribution function.

Friction (by way of Coulomb interactions) between the plasma particles
and the cosmic rays is weak and will be neglected. The cosmic rays inter-
act with the wind chiefly by way of the electromagnetic fields carried by
the wind. These fields can be separated into smooth parts 50 and 90

which are time invariant in the steady wind, plus fluctuating, spatially



irregular parts. !EO arises from the polarization of the flowing

plasma. |If :5 is the velocity of the plasma then

= - Jr X !?o //C F‘)

wn 0

The smooth, steady fields do not destroy the isotropy of the cosmic

(1)

rays although the kinetic energies of the individual particles do vary

as they move about in the potential field (1) and a pressure gradient

(2)

normal to the ecliptic tends to appear . * The effect of the smooth

‘field on the energy of the average particle is

¢ JfamwE dw = 5T,

which vanishes since iﬁ?: 0 - The smooth, large-scale time-invariant,
average electromagnetic fields produce no continual deceleration in the
steady state.

Now consider the interaction between the cosmic rays and the ir-
regular components of the field. The‘{rregularities will scatter the
cosmic rays. Now an irregularity is‘very massive when compared to an
individual cosmic ray. The irregularity has the mass of the ﬁlasma to
which the magnetic field is tied (by the high electrical conductivity of

(s-9) suggest a size

the plasma). Observations of cosmic ray diffusion
of the‘order of 4{&:10"cm_for the typical irregulérity responsible
for the diffusion. The mass is therefore approximately ,(3)<

(hydrogen mass) x (number density) == 10° grams. The momentum of such



a scattering center is about 127 times greater than the momentum of a
10~-Gev cosm}c ray proton. It i;mthgréfore a very good approximation to
regard the solar wina-cosmic ray interaction as being the interaction
between a gas of very massive particles (the magﬁetic irregularities)
streém?ng through a stationary gas of 'l1ight particles (the cosmic rays).
The light gas maintains its stationary distribution in space by diffus-
ing upstream toward the sun.

We now see a gas (consisting of clumps of magnetic field) flowing
rapidfy outward through a stationary gas consisting of cosmic rays.
Col!jsions between the massive‘ifregularities and the cosmic rays .
t»ansfer momentum and energy to the cosmic ray gas. The momentum trans-
ferred to the'cosmié ray gas is balanced by the gradient in the pressure

of the cosmic ray gas(lo)°

The energy given to the «cosmic ray gas leaks
away to interstellar space carried by individual cosmic rays whfchres-
cape from the solar wind with more energy than they had when en;ering

it. The energy transfer can be regarded as the conversion of the stream-

ing energy of the solar wind into heat by the action of friction between

two interpenetrating fluids.



ACCELERATION BY FRICTION WITH SOLAR WIND

An estimate of the rate at which cosmic rays gain energy due_to
collisions with the magnetic scatteking centers that stream through the
stationary'co§m{c ray gas is easily made: reduce the problem to one
dimension. At a given point in space' the cosmic rays are maintained in
an isotropic distribution by scattering. Equal numbers of cosmic rays
are moving upstream and‘downstfeam so that the average velocity is zero.
in a collision with a scattering center moving with velocity v , a
particle whose total energy is EE and whose speed is W will suffer

a change in energy given by

AE =28(v¢w)v/(:'-v"/vcz)cz (2)

where the + (~) sign refers to a head-on (tail-on) collision. If the
number density of cosmic rays is N , the number density of scattering
centers N and the cross section for total reflection O , then the

number of head-on (tail-on) collisions per unit volume per unit time is

_;T nNo (wzv)

Multiplying the number of each kind of collision by the energy change for
that kind of collision and adding gives the energy change suffered per
unit time by all the cosmic_réys in a unit volume. Dividing by n

then gives the average energy change per unit time experienced by a



' 2
single particle. Neglecting terms in VZ/C compared to unity the result
is
A€

T 6‘<_":'Na‘v:"»~//c2

The‘-calculation is a bit more involved in three dimensions and therefore we
shall outline it here, leaving the details to the Appendix. We let F(8) be
the angular part of the particle velocity distribution function, f(zt) the
veloci‘ty dils:.tributi'on fu_nc'tion of the scattering centers with density N) VR
the magnituae of the relative velocity of the particles apd scattering centers,

0"(@) the differential scattering cross section for the particle-scattering
~ center interaction ‘with a center-ofg;mass scattering angle ¢} N and let A&
be the change in energy suffered lla.y the particle which had velocity r be-
fore th.e collision. The mean r;ate of change of energy of a particle is given
by multiplying at times the frequency of collision 2/. 2/ is equal to
the product of the two distribution functions timés the collision cross section
and the relative velocity. Since we want the mean rate ofvchange' of energy
averaged over all collisions per unit 'time per unit volume we must the.n inte-
grate over all scatter‘ing center velocities A , scattering angles @., and
incident angles @ , between !:t and m/ s 'the particle veloc'ityy. One |

should note that the distribution functions are normalized so that

f £(o) am J(ca:e) = |}
while

[etw) dze = N



where N s the density of scattering centers. Thus we wish to calculate

!

|
5—;6- = fzri((ore)fdﬁfﬂrl(@s@) 7[(9)_?(:‘)\4 0'(@)45 (3)

-1 -1

The case we will consider is that in which the scattering centers are
streaming radially oﬁtward from the sun with a constant velocity !! , equal
to the solar wind velocity. This approxfmation neglects the random magneto-
hydrodynamic wéves which one expects to propagate with the Alfvén speed in a
frame of reference moving with the velocity :y . The Alfvén speed is about
one tepth the solar wind speed whfch is 300-500 km/sec. Thus any second-order
Fermi éffects from the random motion of these MHD waves will be 100 times
smaller than the friction caused by the streaming irregularities.

The scattering model chogen is 1800 scattering in the center-of-mass
system. One should note that the relafivisffc expression for the relative
velocity should be used in equation (3). NS is found by making a
Lorentz transformation to the center-of-mass frame, letting the direction (but
not the magnitude) of the particle's momentum chénge in the scattering process,
and then transforming back to the laboratory system.

The situation of particular interest is that in which vz & Wzﬁ C‘z .

For this case substitution in equation (3) yields, after integration,

2
48 . £oNE [ 1..00Y)]

dt
2,2
= Sov¥ (%)
7~ Ke*
where K= l“¢% is the diffusion coefficient for isotropic diffu-~
sion in three dimensions and A= l//O'N is the mean free path for

scatteriug-



ADIABATIC DECELERATION

The tendency for the magnetic irregularities to convect cosmic rays
along with the solar wind has led to the idea that cosmic rays in the
interplanetary medium experience a systematfc deceleration known as
"adiabatic dece]eration“m(ll) According to this idea, the kineti¢c energy

‘T- of a particle located at & is continually decreasing at the rate

¢ 4T A (T)
T I = - —3 oY (5)

where (A= 2 for nonrelativistic particles, A= 1 for extreme rela-
tivistic particles and W is.the solar wind velocity.
L}
Now Eq. (5) derives from considering a fluid in thermodynamic equi-

Vibrium at temperature 1- , undergoing an adiabatic expansion so that

T o< n'! (6)

where N is the density and Y is the ration of specific heats, and

having a fluid velocity W . The temperature of a fluid element then
- w

‘varies.as

AT T |
Al _ 20 wesT ..
T TYT (7)

while the density and velocity field are coupled by the continuity equa-

tion



__.,.v.(ny)-;o (8)

L LT 2
T A - "3 V¥ ©)

in the steady state, which is the nonrelativistic form of (5). We have

set ¥=5/3 .

We emphasize that the velocity appearing in (5) is the bulk velocity
of the fluid itself. Therefore, if we want to apply eqn. (9), or its
generalized form (5), to cosmic rays then J! should be the bulk velocity
of the cosmic ray gas -- not the velocity of the solar wiﬁd.

Now, the average motion, as shown by Stern (¥) , is zero if the magnetic
field is smooth. |If the field is very irregular the‘avérage motion is
N xr , where M2 is the angular velocity of the sun (?312) . This
WA w wwn
represents rigid rotation of the cosmic ray gas with the sun.* Therefore,
apart from the tendency to corotate, the bulk velocity of the solar wind is
zero in the steady state: The cosmic ray distribution in the solar system is
the result of a competftion between cutward convect?on and inward-diffusion.
In the steady state, the convective flux is just balanced by the diffusive
flux so that the bulk velocity appearing in eg. (8) vanishes. Thés implies
that there is a non-zero bulk velocity in the coordinate frame mbving with

the wind. The fact that this velocity

*If we drop the assumption of spherical symmetry then streaming motions
in the radial direction become possible (2) ., However extremely distorted
geometries must be assumed in order to achieve streaming velocities ap-

proaching the solar wind velocity.




= —-KV émn

3¢

is small compared to the mean particle velocity justifies the use of
diffusion theory and implies that the distribution function is gggglx
isotropic in the frame of the wind. But we would not be justified in
entirely neglecting EE?, , thereby éssuming'isotropy in the frame of

the wind, since to do so would leave us with a bulk velocity in the frame

of the sun

— —
w v md T w
" MWI" i
equal to W . . In this case the solar system, lacking any sources,
wa Wind

would be emptied of galactic cosmic rays in a few days. Therefore eq (5) cannot

be directly applied togalactic cosmic rays in the steady state.



It should also be clear that acceleration and deceleration of cosmic
rays, galactic particles included, is certainly to be expected when the
large scale structure of the interplanetary magnetic field i's changing

(2s-1s5) |, this paper we

in time{ as it does after a Targe solar flare
arefconsidering stationary conditions while in the latter references
transient conditions were considered. A large flare generates a dis-
turBance which propagates into interplanetary space. This disturbance
is variously described as a cloud of turbulent plasma bearing a dis-
orderéd magnetic field(le) or a blast wave expanding away from éhe Sun(14),
In the former case the ifregular magnetic field tends to exclude galactie
cosmic rays '‘leading to a Forbush decrease when the cloud sweeps over the
earth. As the cloud grows from solar flare dimensions to astronomical-
unit dimensions the mean magnetic field at a given point within the

¢loud decreases with time. The number of magnetic irregularities per

unit volume aiso decreases with time. Under these transient conditions
there is a deceleration of cosmic rays.

The blast wave(l4)

is a region or shell of compressed interplane-
tary magnetic field aﬁd gas af the head of the cloud or disturbance.
The advancing blast wave is capable of accelerating cosmic rays and
other particles in its path. Cosmic rays that find themselves behind
the blast wave are reflected by a 'lmagnetic piston' which expands away
from the sun. The magnetic structure, as characterized by the size of
the region between the blast wave and the sun, is growing in time and,

by Fermi collisions of the overtaking type, this transient expansion

produces a deceleration of cosmic rays.

10



These phenomena should be contrasted with the conditions existing
in interplanetary space when the solar wind is steady. Except for the

(x7) sweeps by, the

reversal of field direction when a sector boundary
average magnetic field at a point is constant in strength and direction.

Even if we take note of the existence of fluctuations in AE represent-

ing scattering centers for cosmic rays, we must recognize that the number

of scattering centers per unit volume is constant in time in the quiet
wind. Therefore collisions between cosmic rays and scatte;iné cehters
in the steady solar wind will not produce the deceleration described by
Laster et al(;S)o

Instead, the streaming of the scattering~centers throught the‘sta-
tionary cosmic ray gas wi]l heat the cosmic.ray gas, accelerating indi-
vidual cosmic rays. The acceleration will be enhanced by any random
motion which the scattering centers may‘haveo The problem is analagous
tora slowly turning perforated paddle wheel moving through a volume ofi
air. The paddles tend to convect the air along with them. The air
leaks through the holes in the paddles and maintains a constant spatial
distributioha But friﬁtion between the paddles and air molecules heats

the air.

11



DISCUSS ION

The typical cosmic ray seen at the earth has spent a time of the
order of L?/ﬁﬂ diffusing around in the solar wind, where L is the
radius of the cavity which thg wind carves out of the interstellar
medium(ls). Integrating (k) over the time interval Lz/K , neglect-

ing the variation of K ’yields

2
£=¢, exp{g(%vx j (10)

for the mean total energy of a cosmic ray inside the cavity in terms of
its total energy é; outside the cavity.
The density N of cosmic rays near the sun is reduced below the

density in interstellar space h by the competition between convec-

]
tion and diffusion(ls). Parker's theory yields
Lv (11)
= hn e -
h o ﬂ:{ R

If we neglect the fact that cosmic rays display a distribution in energy
and consider a monoenergetic cosmic ray gas then a limit on the coeffi-
cient l.V/K_ can be deduced. The particles are assumed to be rela-

tivistic, therefore wa~c¢c  and we may write

Lvw Lv
=Y o~ 2oz o
Ke K

Then

12
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2
x
E =€& ¢
° (12)
and
-
n=n°e

0 (13)

Now momentum conservation applied to the interaction between the solar
wind and the cosmic ray gas requires that the pressure of the cosmic
ray gas shall increase with distance from the sun. Since the pressure

of the cosmic ray gas is proportional to nE we must have

ne/n€ < 1 (14)

or 2 £ 1 . Thus for the average cosmic ray energy we must have
Lv/k ¢ 1 .

Analysis of the behavior of ''cosmic rays'' generated at the sun sug-
gests that the mean free path for cosmic rays with kinetic energies of
the order of a few hundred Mev to A 1 Gev is about 1022 cm yielding

K = 10%% sec'l(a'a). For kinetic energies of the order of a few
Gev the mean free path ma9 be somewhatvlonger. However, if we take

K = 1022 ¢p® s and y= 3 x 107 cm st (the solar wind velé‘city) we
get an upper limit on L which is ~20 astronomical units. The actual
boundary between the solar wind plasma and interstellar gas may be loca-

ted considerably further away from the sun since the dimension L



14

defines only the region within which the diffusion coefficient is small
enough to cause significant scattering. The diffusion coefficient is
likely to vary with heliocentric distance partly because of the radial
divergence of the plasma flow and partly because of the generation and
dissipation of the tﬁfbulence which manifests itself as magnetic irre-
gularities.

It is instructive to compute the total amount of energy dissipated

from the wind by this friction. This will be of the order of

2 d&

W
Q=TFiin, I
3 av +
4 (15)
_ 3w 2 2 // 2
- _'9_L navgqvv w/Ac
With the parameters mentioned above and taking é;average = 2 Gev and
N, = 10729 cn™® we find Q ~10%* erg s™k. This should be compared

to the eneréy transported away from fhe corona by the solar wind which
.is of the order of., ‘n‘r':"NeM v3/1 where vre is the astronomical

unit, Ne is the‘solar wind density at one a.u. and M is the hydro-
gen mass. For N, = 4 cm™ this is of the order of 10°® erg s~%,

Thus about one percent of the solar wind's streaming ene;gy is trans-
ferred to cosmic rays by collisions with magnetic irregularities. How-
ever, some care should be exercised here since several of the parameters
in (15) are highly uncertain, particularly the size of the cavity and the

mean free path for scattering.
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We conclude that (apart from the effect of the polarization elec-
tric field) cosmic rays in the vicinity of the earth have a mean den-
sity that is smaller than that in interstellar space by a factor some-
what less than about three, while they are on the average more energetic

than they are in interstellar space by a factor also somewhat less than

about three.



CONCLUS ION

The idea that cosmic rays are adiabatically decelerated in the
steady solar wind is based on the assumption that all cosmic rays are
convected along with the wind. Those cosmic rays that are convected
along with the solar wind wili in fact be decelerated by adiabatic de-
celeration. However all cosmic rays are not convected along with the
wind. The average motion of individual cosmic ray particles is given
by the bulk veloéity of the cosmic ray gas. In the equilibrium state
thfs bulk velocity is zero. Some particles are being convected outward
at any instant and these are losing energy. But other particles are

\hw\r'b,:nn
SARARRENS

their

ting t e
bR A~ Y &Jl-le

way u e wind and these latter particles
are gaining energy. The net effect is a stationary cosmic ray gas
through which massive scattering centers are flowing. The energy
gained in "head-on' Fermi collisions is then slightly greater than the
energy lost in '‘tail-on' collisions so that on the average energy is
being fed into the cosmic rays.by the irregularities in the solar wind.
The cosmic ray gas in the solar environment is therefore being
heated by fricticn with the solar wind which flows through it. This
heat leaks away to interstellar space (and to the sun) by diffusion.
That is, individual cosmic rays, having been“heated,by their contact
with the solar wind, ultjmately'escape back to interstellar space or
are absorbed by the sun or a planet. |In this manner an equilibrium is

established in which the cosmic ray gas within the solar wind regfon is

slightly 'hotter' than the surrounding interstellar cosmic ray gas.

16
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" APPENDIX

The expression to be calculated. is

:f 4w fac(w:a) f 4 f dleas®) £(s) p(o)V, V. ~(8) o€

=1

where

{(6) =
o() = N S(w-w)

0/1_ -
% - {<t..~-:f>‘- lwmgelf (- weae)

(@) = = §(ces®r1)

£ e o xctleza

We are now using units inwhich <€=1 . 0 is the total
scattering cross section, &£ is the initial enérgy of the particle,
2 ! . | . ,
N = (I—’u ) , 6c is the angle between

U, W
wn 7 M
system after the collision, and

in the center-of-mass
@ is the angle between &, W in the

WA C
laboratory system before the collision.

Substitution into equation (A1) vyields

& 2 '
5‘;‘: -i-O“NfP ( I, +Iz+I3>

(82}

19
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with
I:-faf v’ 2 Lwtevt Zw%-wv('/u):‘ )
! = wvu
! [Wev - 2wru wzv"(:—,az)]'/z

I = - fae wv - (Ak)
N Zaa 2 o |

I = f“@“— v cos @ [ v "“”/“ Wyl )] (A5)
3 R

/(4-

where /u, = c¢os & .

For the scattering process which we are considering, ¢os 9< = - ms}ﬂ<
where y% is the angle between the particle velocity and the scatteriﬁg
cenfer velocity in the center.of-mass frame before the interaction.

When one then relates C”Pc to cos & Vvia the usual Lorentz

transformation one finds that

I3 = I' + Il (A6)
~ These integrals can be computed exactly; however it is instructive
to first examine the expressions in three‘limiting cases, viz. Case I:
via wte | ; Case 1l v"« w2 1 (this is the .
physical situation under discussion in the body of the paper); and
Case 111:  vi& wr&l
'The ultrarelativistic case, V £ W = 4 , will be discussed

separately below.

20



In order to solve (A2) for cases I-l11 it is sufficient to make a
few simplifying approximations. lIgnore the cross product terms in ‘\ﬁ
and A€ as these are of order '/C:L times the other terms. One can

further allow

Ve = Ly | Gopew)” = [zl (1 wiw)

Substitution of (A3)-(AT) into (A2) and integrating yields, after

some elementary algebra,

dE ? 2 5 A v 1y?
—25-¢N€f'vw ,+5W" T(I-*s_w;_)

Thus, one has for Case | and Case Il ( vZ« W")

2 N
4€ _ £ oNE {: + O(ver) f
while for Case 111 (viswi« 1)

ig ~ -,-S.Q"NE\/‘LW

a——

At S

The salient feature of these limiting cases is that at least one
velocity is nonrelativistic. It is this fact which allows the approxi-

mations to be made. It should be pointed out that in Case. Il the

(AT)

(AB)

(A9)

21



2
series in Va'/W2 converges rapidly even when V W1
2 2
To evaluate (A2) in the ultrarelativistic case when V S W =~ 1
.we are allowed no approximations and (A3)-(A5) must be computed exactly.
This is easily done, but at the expense of not being readily able to
recover the nonrelativistic results in (A8)-(A9).

The exact expression for (A2) is

2 ? I |-WV+W-V
d€ ~oNEM | AY & (l—wq) —'zi I-w""-vz-fwlvz)&

dt woow |+ WV $W+y
’ Tt 71 J1-wvtewv?
V\/ 7 2 2 2 ¢ - l1—-w —V‘f'WV Cos‘l
— =W =Y WV 0s -
+W + )l —wv | +wWv
which reduces to
dE 2 z/
J—’F ~ ZU‘NEF v w
when Vq‘s W‘L’.}.’i,
In order to verify this limit, notice that the logarithmic
term becomes
. — (I-w
~ ye (H-w)
(A10)

| 2,
By L'Hopital's rule »aom 4 S, which yields

equation(A10).



